Рабочая программа Алгебра и геометрия 8 класс

МИНИСТЕРСТВО ПРОСВЕЩЕНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ
Министерство образования в молодежной политики Свердловской области
Управление образования администрации Нижнесергинского муниципального
района
Муниципальное казенное общеобразовательное учреждение средняя
общеобразовательная школа № 13 пгт. Дружинино

(МКОУ СОШ № 13 пгт. Дружинино)

РАССМОТРЕНО
на Педагогическом
совете

Приказ № 2-од 01.09.2023

протокол № 1 от 30.08.2023

РАБОЧАЯ ПРОГРАММА
учебный курс «Математика»
для обучающихся 8 класса

пгт Дружинино
2023 год

ПОЯСНИТЕЛЬНАЯ ЗАПИСКА.
Рабочая программа по математике 8 класса разработана в соответствии с
требованиями:
- Федерального Закона № 273-ФЗ от 29.12.2012 г. « Об образовании в
Российской Федерации»;
-ФГОС ООО (приказ Министерства образования и науки РФ № 1897 от
17.12.2010 г., с изменениями;
-Примерной Образовательной программы основного общего образования,
одобренной Министерством образования и науки РФ от 08.04.2015 г.№ 1\15;
- Санитарно-эпидемиологических требований к условиям и организации
обучения в общеобразовательных учреждениях и санитарноэпидемиологических правил и нормативов СанПиН 2.4.2821 -10
(утверждены постановлением Главного государственного санитарного врача
РФ от 29 декабря 2010 г. № 189 c изменениями №3,
утв. постановлением Главного государственного санитарного врача РФ от 24
ноября 2015 г. № 81;
- Приказа Министерства образования и науки РФ « Об утверждении
федеральных перечней учебников , рекомендованных к использованию по
реализации имеющих аккредитацию образовательных программ начального
общего, основного общего, среднего общего образования на 2022-2023
уч.год»;
- основной образовательной программой основного общего образования
МКОУ СОШ № 13 р.п. Дружинино;
- Учебного плана МКОУ СОШ № 13 р.п.Дружинино на 2023-2024 уч.год;
- Положения « О рабочей программе педагога МКОУ СОШ № 13
р.п.Дружинино».
ЦЕЛИ И ЗАДАЧИ ПРОГРАММЫ.
Обучение математике в основной школе направлено на достижение
следующих целей:
1) в направлении личностного развития:
• развитие логического и критического мышления, культуры речи,
способности к умственному эксперименту;

• формирование интеллектуальной честности и объективности,
способности к преодолению мыслительных стереотипов, вытекающих из
обыденного опыта;
• воспитание качеств личности, обеспечивающих социальную
мобильность, способность принимать самостоятельные решения;
• формирование качеств мышления, необходимых для адаптации в
современном информационном обществе;
• развитие интереса к математическому творчеству и математических
способностей;
2) в метапредметном направлении:
• формирование представлений о математике как части общечеловеческой
культуры, о значимости математики в развитии цивилизации и современного
общества;
• развитие представлений о математике как форме описания и методе
познания действительности, создание условий для приобретения
первоначального опыта математического моделирования;
• формирование общих способов интеллектуальной деятельности,
характерных для математики и являющихся основой познавательной
культуры, значимой для различных сфер человеческой деятельности;
3) в предметном направлении:
• овладение математическими знаниями и умениями, необходимыми для
продолжения образования, изучения смежных дисциплин, применения в
повседневной жизни;
• создание фундамента для математического развития, формирования
механизмов мышления, характерных для математической деятельности.
Цель изучения курса алгебры в VII-IX классах является развитие
вычислительных и формально-оперативных алгебраических умений до
уровня, позволяющего уверенно использовать их при решении задач
математики и смежных предметов (физика, химия, основы информатики и
вычислительной техники и др.), усвоение аппарата уравнений и неравенств,
как основного средства математического моделирования прикладных задач,
осуществление функциональной подготовки школьников. В ходе изучения
курса учащиеся овладевают приемами вычислений на калькуляторе. Курс
характеризуется повышением теоретического уровня обучения, постепенным

усилением роли теоретических обобщений и дедуктивных заключений.
Прикладная направленность курса обеспечивается систематическим
обращением к примерам, раскрывающим возможности применения
математики к изучению действительности и решению практических задач.
Цель изучения курса геометрии в VII-IX классах является
систематическое изучение свойств геометрических фигур на плоскости,
формирование пространственных представлений, развитие логического
мышления и подготовка аппарата, необходимого для изучения смежных
дисциплин и курса стереометрии в старших классах. Курс характеризуется
рациональным сочетанием логической строгости и геометрической
наглядности. Увеличивается теоретическая значимость изучаемого
материала, расширяются внутренние логические связи курса, повышается
роль дедукции, степень абстрактности изучаемого материала. Учащиеся
овладевают приемами аналитико-синтетической деятельности при
доказательстве теорем и решении задач. Систематическое изложение курса
позволяет начать работу по формированию представлений учащихся о
строении математической теории, обеспечивает развитие логического
мышления школьников. Изложение материала характеризуется постоянным
обращением к наглядности, использованием рисунков и чертежей на всех
этапах обучения и развитием геометрической интуиции на этой основе.
Целенаправленное обращение к примерам из практики развивает умения
учащихся вычленять геометрические факты, формы и отношения в
предметах и явлениях действительности, использовать язык геометрии для
их описания.
Задачи:
 сформировать практические навыки выполнения устных, письменных,
инструментальных вычислений, развить вычислительную культуру;
 овладеть символическим языком алгебры и геометрии, выработать
формально – оперативные алгебраические и геометрические умения и
научиться применять их к решению математических и нематематических
задач;
 изучить свойства и графики элементарных функций, научиться
использовать функционально-графические представления для описания и
анализа реальных зависимостей;
 развить логическое мышление и речь – умение логически
обосновывать суждения, проводить несложные систематизации, приводить
примеры и контр примеры, использовать различные языки математики
(словесный, символический, графический) для иллюстрации, интерпретации,
аргументации и доказательства;

 сформировать представления об изучаемых понятиях и методах как
важнейших средствах математического моделирования реальных процессов
и явлений.
МЕСТО ПРЕДМЕТА В УЧЕБНОМ ПЛАНЕ.
Предмет математика 8 класса входит в компонент образовательного
учреждения. Данный курс обеспечивает непрерывность изучения предмета
Математика в основной школе. На изучение курса в 8 классах отводится 175
часов в год, 5 часов в неделю.
В начале учебного года предусмотрено продолжение освоения ООП
курса математики за 7 класс. Не освоенные темы запланировано реализовать
на уроках повторения. На уроках учащиеся освоят новый тематический
материал за курс 7 класса, который учащиеся не изучали в условиях
дистанционного образования.
Так же данное повторение способствует подготовке учащихся к
ВПР по данному предмету.

ПЛАНИРУЕМЫЕ РЕЗУЛЬТАТЫ ОСВОЕНИЯ УЧЕБНОГО
ПРЕДМЕТА.
Программа обеспечивает достижение следующих результатов
освоения образовательной программы основного общего образования:
личностные:
1) сформированность ответственного отношения к учению, готовность и способности
обучающихся к саморазвитию и самообразованию на основе мотивации к обучению и
познанию, выбору дальнейшего образования на базе ориентировки в мире профессий и
профессиональных предпочтений, осознанному построению индивидуальной
образовательной траектории с учётом устойчивых познавательных интересов;
2) сформированность целостного мировоззрения, соответствующего современному
уровню развития науки и общественной практики;
3) сформированность коммуникативной компетентности в общении и сотрудничестве
со сверстниками, старшими и младшими, в образовательной, общественно полезной,
учебно-исследовательской, творческой и других видах деятельности;
4) умение ясно, точно, грамотно излагать свои мысли в устной и письменной речи,
понимать смысл поставленной задачи, выстраивать аргументацию, приводить примеры и
контрпримеры;
5) представление о математической науке как сфере человеческой деятельности, об
этапах её развития, о её значимости для развития цивилизации;

6) критичность мышления, умение распознавать логически некорректные
высказывания, отличать гипотезу от факта;
7) креативность мышления, инициатива, находчивость, активность при решении
алгебраических задач;
8) умение контролировать процесс и результат учебной математической деятельности;
9) способность к эмоциональному восприятию математических объектов, задач,
решений, рассуждений.

метапредметные:
1) умение самостоятельно планировать альтернативные пути достижения целей,
осознанно выбирать наиболее эффективные способы решения учебных и познавательных
задач;
2) умение осуществлять контроль по результату и по результату и по способу действия
на уровне произвольного внимания и вносить необходимые корректив;
3) умение адекватно оценивать правильность или ошибочность выполнения учебной
задачи, её объективную трудность и собственные возможности её решения;
4) осознанное владение логическими действиями определения понятий, обобщения,
установления аналогий, классификации на основе самостоятельного выбора оснований и
критериев, установления родовидовых связей;
5) умение устанавливать причинно-следственные связи; строить логические
рассуждение, умозаключение (индуктивное, дедуктивное и по аналогии) и выводы;
6) умение создавать, применять и преобразовывать знаково-символические средства,
модели и схемы для решения учебных и познавательных задач;
7) умение организовывать учебное сотрудничество и совместную деятельность с
учителем и сверстниками: определять цели, распределение функций и ролей участников,
взаимодействие и общие способы работы; умение работать в группе: находить общее
решение и разрешать конфликты на основе согласования позиций и учёта интересов;
слушать партнёра; формулировать, аргументировать и отстаивать своё мнение;
8) сформированность учебной и общепользовательской компетентности в области
использования информационно-коммуникационных технологий (ИКТ- компетентности);
9) первоначальные представления об идеях и о методах математики как об идеях и о
методах математики как об универсальном языке науки и техники, о средстве
моделировании явлений и процессов;
10) умение видеть математическую задачу в контексте проблемной ситуации в других
дисциплинах, в окружающей жизни;
11) умение находить в различных источниках информацию, необходимую для решения
математических проблем, и представлять её в понятной форме; принимать решение в
условиях неполной и избыточной, точной и вероятностной информации;
12) умение понимать и использовать математические средства наглядности (рисунки,
чертежи, схемы и др.) для иллюстрации, интерпретации, аргументации;
13) умение выдвигать гипотезы при решении учебных задач и понимать необходимость
их проверки;

14) умение применять индуктивные и дедуктивные способы рассуждений, видеть
различные стратегии решения задач;
15) понимание сущности алгоритмических предписаний и умение действовать в
соответствии с предложенным алгоритмом;
16) умение самостоятельно ставить цели, выбирать и создавать алгоритмы для решения
учебных математических проблем;
17) умение планировать и осуществлять деятельность, направленную на решение задач
исследовательского характера.

предметные: 1) умение работать с математическим текстом (структурирование,
извлечение необходимой информации), точно и грамотно выражать свои мысли в устной
и письменной речи, применяя математическую терминологию и символику, использовать
различные языки математики (словесный, символический, графический), обосновывать
суждения, проводить классификацию, доказывать математические утверждения;
2) владение базовым понятийным аппаратом: иметь представление о числе, владение
символьным языком алгебры, знание элементарных функциональных зависимостей,
формирование представлений о статистических закономерностях в реальном мире и о
различных способах их изучения, об особенностях выводов и прогнозов, носящих
вероятностный характер;
3) умение выполнять алгебраические преобразования рациональных выражений,
применять их для решения учебных математических задач и задач, возникающих в
смежных учебных предметах;
4) умение пользоваться математическими формулами и самостоятельно составлять
формулы зависимостей между величинами на основе обобщения частных случаев и
эксперимента;
5) умение решать линейные и квадратные уравнения, а также приводимые к ним
уравнения, неравенства, системы; применять графические представления для решения и
исследования уравнений, неравенств, систем; применять полученные умения для решения
задач из математики, смежных предметов, практики;
6) овладение системой функциональных понятий, функциональным языком и
символикой, умение строить графики функций, описать их свойства, использовать
функционально-графические представления для описания и анализа математических задач
ирреальных зависимостей;
7) овладение основными способами представления и анализа статистических данных;
умение решать задачи на нахождение частоты и вероятности случайных случайных
событий;
8) умение применять изученные понятия, результаты и методы при решении задач из
различных разделов курса, в том числе задач, не сводящихся к непосредственному
применению известных алгоритмов.

СОДЕРЖАНИЕ ПРОГРАММЫ
Курс «Алгебра»
Арифметика Действительные числа. Квадратный корень из числа.
Корень третьей степени. Запись корней с помощью степени с дробным
показателем. Понятие об иррациональном числе. Иррациональность числа и
несоизмеримость стороны и диагонали квадрата. Десятичные приближения
иррациональных чисел. Множество действительных чисел; представление
действительных чисел бесконечными десятичными дробями. Сравнение
действительных чисел. Координатная прямая. Изображение чисел точками
координатной прямой. Числовые промежутки. Алгебра Алгебраические
выражения. Квадратные корни. Свойства арифметических квадратных
корней и их применение к преобразованию числовых выражений и
вычислениям. Уравнения. Квадратное уравнение: формула корней
квадратного уравнения. Теорема Виета. Решение уравнений, сводящихся к
линейным и квадратным. Примеры решения уравнений третьей и четвёртой
степеней. Решение дробно-рациональных уравнений. Декартовы координаты
на плоскости. Графическая интерпретация уравнения с двумя переменными.
График линейного уравнения с двумя переменными; угловой коэффициент
прямой; условие параллельности прямых. Графики простейших нелинейных
уравнений: парабола, гипербола, окружность. Графическая интерпретация
систем уравнений с двумя переменными. Функции. Основные понятия.
Зависимости между величинами. Понятие функции. Область определения и
множество значений функции. Способы задания. График функции. Свойства
функций, их отображение на графике. Примеры графиков зависимостей,
отражающих реальные процессы. Числовые функции. Функции,
описывающие прямую и обратную пропорциональные зависимости, их
графики и свойства. Линейная функция, её график и свойства. Квадратичная
функция, её график и свойства. Степенные функции с натуральными
показателями 2 и 3, их графики и свойства. Графики функций , , . 3 x . x y 
x y y
Элементы логики. Понятие о равносильности, следовании,
употребление логических связок если…, то…, в том и только в том случае,
логические связки и, или. Математика в историческом развитии История
вопроса о нахождении формул корней алгебраических уравнений,
неразрешимость в радикалах уравнений степени, большей четырёх. Н.
Тарталья, Дж. Кардано, Н. Х. Абель, Э. Галуа. Изобретение метода
координат, позволяющего переводить геометрические объекты на язык
алгебры. Р. Декарт и П. Ферма. Примеры различных систем координат на
плоскости.
Курс «Геометрия».

Геометрические фигуры. Серединный перпендикуляр к отрезку.
Свойства биссектрисы угла и серединного перпендикуляра к отрезку.
Средняя линия треугольника. Теорема Фалеса. Подобие треугольников.
Признаки подобия треугольников. Теорема Пифагора. Синус, косинус,
тангенс, острого угла прямоугольного треугольника. Четырёхугольник.
Параллелограмм, его свойства и признаки. Прямоугольник, квадрат, ромб, их
свойства и признаки. Трапеция, средняя линия трапеции. Многоугольник.
Выпуклые многоугольники. Сумма углов выпуклого многоугольника.
Правильные многоугольники. Окружность и круг. Дуга, хорда. Центральный
угол, вписанный угол, величина вписанного угла. Взаимное расположение
прямой и окружности, двух окружностей. Касательная и секущая к
окружности, их свойства. Вписанные и описанные многоугольники.
Окружность, вписанная в треугольник, и окружность, описанная около
треугольника. Вписанные и описанные окружности правильного
многоугольника. Решение задач на вычисление, доказательство и построение
с использованием свойств изученных фигур. Измерение геометрических
величин. Периметр многоугольника. Градусная мера угла, соответствие
между величиной центрального угла и длиной дуги окружности. Понятие
площади
плоских
фигур.
Площадь
прямоугольника.
Площади
параллелограмма, треугольника и трапеции. Площадь многоугольника.
Соотношение между площадями подобных фигур. Решение задач на
вычисление и доказательство с использование изученных формул. Элементы
логики. Определение. Аксиомы и теоремы. Доказательство. Доказательство
от противного. Теорема, обратная данной. Пример и контрпример. Понятие о
равносильности, следовании, употребление логических связок если…, то…, в
том и только в том случае, логические связки и, или. Геометрия в
историческом развитии. Пифагор и его школа. Фалес.
Поурочно - тематическое планирование
Урок: алгебра
Класс: 8
Количество часов: 105
Учитель Жидик Ю.В.
2023 – 2024 учебный год
№ п.п.

Тема

1-2

Глава 1. Повторение (2 часа)
Вводное повторение курса алгебры 7 класса

Колво
часов

2

Контр
ольн
ые
работ
ы

Глава 2. Неравенства (19 часов)
3-4
5
6-7
8
9
10
11-12
13-14
15-17
18-19
20
21

22
23
24-25
26-27
28-31
32-33
34
35
36

37-38
39-40
41-43
44-45
46-47
48
49

50-51
52
53
54-56
57-58
59-61
62-65
66-68
69-71
72-73

Положительные и отрицательные числа.
Числовые неравенства
Основные свойства числовых неравенств
Сложение и умножение неравенств.
Строгие и нестрогие неравенства
Неравенства с одним неизвестным.
Решение неравенств
Системы неравенств с одним неизвестным. Числовые
промежутки.
Решение систем неравенств
Модуль числа. Уравнения и неравенства, содержащие модуль.
Повторение и систематизация пройденного материла
Контрольная работа №1 по теме «Решение систем
неравенств»
Глава 3. Приближенные вычисления (15 часов)
Приближенные значения величин. Погрешность приближения.
Оценка погрешности
Округление чисел
Относительная погрешность
Практические приемы приближенных вычислений
Действия над числами, записанными в стандартном виде
Вычисления на МК степени числа, обратного данному
Повторение и систематизация пройденного материла
Контрольная работа по теме №2 «Приближенные
вычисления»
Глава 4. Квадратные корни (13 часов)
Арифметический квадратный корень
Действительные числа
Квадратный корень из степени
Квадратный корень из произведения
Квадратный корень из дроби
Повторение и систематизация пройденного материла
Контрольная работа №3 по теме «Квадратные корни»
Глава 5. Квадратные уравнения
II полугодие (26 часов)
Квадратное уравнение и его корни
Неполные квадратные уравнения.
Метод выделения полного квадрата.
Решение квадратных уравнений.
Приведенное квадратное уравнение. Теорема Виета
Уравнения, сводящиеся к квадратным.
Решение задач с помощью квадратных уравнений.
Решение простейших систем, содержащих уравнение второй
степени.
Различные способы решения систем уравнений
Решение задач с помощью систем
уравнений

1
2
1
2
1
1
1
2
2
3
2
1
1
.
1
1
2
2
4
2
1
1
1

2
2
3
2
2
1
1
1
2
1
1
3
2
3
4
3
3
2

Повторение и систематизация пройденного материла
Контрольная работа №4 по теме «Решение задач с
помощью квадратных уравнений.»
Глава 6. Квадратичная функция( 15 часов)
76
Определение квадратичной функции
77
Функция у=х^2
78-80
Функция у=aх^2
81-83
Функция у=aх^2 + bx +c
84-87
Построение графика квадратичной функции
88-89
Повторение и систематизация пройденного материла
90
Контрольная работа № 5 по теме «Квадратичная
функция»
Глава 7. Квадратные неравенства ( 11 часов)
91-92
Квадратное неравенство и его решение
93-97
Решение квадратного неравенства
с помощью графика квадратичной
функции
98-99
Метод интервалов
100
Повторение и систематизация пройденного материла
101
Контрольная работа №6 по теме «Квадратные
неравенства»
Глава 8. Повторение. Решение задач (5 часов)
102Повторение
104
105
Итоговая контрольная работа
74
75

1
1

1
1
3
3
4
2
1

2
5

2
1
1

4
1

ПОУРОЧНО-ТЕМАТИЧЕСКОЕ ПЛАНИРОВАНИЕ
Урок: геометрия
Класс: 8
Количество часов: 70
Учитель: Жидик Ю.В.
№ п.п.

Колво
часов

Тема

Контр
ольны
е
работ
ы

Глава 1. Повторение (2)
1-2

Повторение курса геометрии 7 класса

2

Глава 2. Четырехугольники (14)
3
4
5
6
7
8
9

Многоугольники.
Решение задач по теме «Многоугольники»
Параллелограмм.
Признаки параллелограмма
Решение задач по теме «Параллелограмм»
Трапеция.
Теорема Фалеса

1
1
1
1
1
1
1
1

10
11
12
13
14
15
16

Решение задач на построение
Прямоугольник.
Ромб. Квадрат
Решение задач по теме «Прямоугольник. Ромб. Квадрат»
Осевая и центральная симметрии
Решение задач. Подготовка к контрольной работе.
Контрольная работа №1 «Четырехугольники»

1
1
1
1
1
1
1

Глава 3. Площадь (14)
17
18
19
20-21
22
23-24
25
26
27
28-29
30

Площадь многоугольника.
Площадь прямоугольника
Площадь параллелограмма.
Площадь треугольника.
Площадь трапеции.
Решение задач на вычисление площади
Теорема Пифагора
Теорема обратная теореме Пифагора
Решение задач по теме «Теорема Пифагора»
Повторение и систематизация изученного материала
Контрольная работа №2 «Площадь многоугольников»

1
1
1
1
2
1
2
1
1
2
1
1

Глава 4. Подобные треугольники (19)
31
32
33
34
35
36-37
38
39
40
41
42
43
44
45
46
47
48
49

Определение подобных треугольников.
Отношение площадей подобных треугольников
Первый признак подобия треугольников
Решение задач на применение первого признака подобия
треугольников
Второй и третий признаки подобия треугольников
Решение задач на применение признаков подобия
треугольников
Контрольная работа №3 «Признаки подобия
треугольников»
Средняя линия треугольника.
Средняя линия треугольника. Свойство медиан треугольника
Пропорциональные отрезки
Пропорциональные отрезки в прямоугольном треугольнике
Измерительные работы на местности
Решение задач на построение методом подобия
Решение задач на построение методом подобных
треугольников
Синус, косинус и тангенс острого угла прямоугольного
треугольника
Значение синуса, косинуса и тангенса для углов 30⁰, 45⁰, 60⁰
Решение задач по теме «Соотношение между сторонами и
углами прямоугольного треугольника»
Повторение и систематизация изученного материала

2
1
1
1
1
1
2
1
1
1
1
1
1
1
1
1
1
1
1

50

Контрольная работа №4 «Соотношение между сторонами
1
и углами прямоугольного треугольника»
Глава 5. Окружность (16)

51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66

Взаимное расположение прямой и окружности
Касательная к окружности
Решение задач по теме «Касательная к окружности»
Градусная мера дуги окружности
Теорема о вписанном угле
Теорема об отрезках пересекающихся хорд
Решение задач по теме «Центральные и вписанные углы»
Свойство биссектрисы угла
Серединный перпендикуляр
Теорема о точке пересечения высот треугольника
Вписанная окружность
Свойство описанного четырехугольника
Описанная окружность
Свойство вписанного четырехугольника
Повторение и систематизация изученного материала
Контрольная работа №4 «Окружность»

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

ПОВТОРЕНИЕ
67-69
70

Решение задач. Повторение и систематизация изученного
материала
Итоговая контрольная работа

1
3
1

ФОРМЫ ОРГАНИЗАЦИИ УЧЕБНОГО ПРОЦЕССА
При
организации учебного
процесса
будет
обеспечена
последовательность изучения учебного материала: новые знания опираются
на недавно пройденный материал; обеспечено поэтапное раскрытие тем с
последующей реализацией; закрепление в процессе практикумов, тренингов
и итоговых собеседований; будут использоваться уроки-соревнования, уроки
консультации, зачеты.
Формы организации учебного процесса:
 индивидуальные;
 групповые;
 индивидуально-групповые;
 фронтальные;
 практикумы
Формы контроля.
Основными видами классных и домашних письменных работ
обучающихся являются обучающие работы.

По алгебре и геометрии в 8 классе проводятся текущие и одна итоговая
письменные контрольные работы, самостоятельные работы, контроль знаний
в форме теста, диагностические работы.
Текущие контрольные работы имеют целью проверку усвоения
изучаемого и проверяемого программного материала. На контрольные
работы отводится 1 час. Итоговая контрольная работа проводится в конце
учебного года.
Самостоятельные работы и тестирование рассчитаны на часть урока (1525 мин), в зависимости от цели проведения контроля.
КРИТЕРИИ ОЦЕНКИ РЕЗУЛЬТАТОВ
Содержание и объем материала, подлежащего проверке и оценке,
определяются программой по математике для основной школы. В задания
для проверки включаются основные, типичные и притом различной
сложности вопросы, соответствующие проверяемому разделу программы.
Оценка устных ответов:
Ответ оценивается отметкой “5”, если учащийся:
 полностью раскрыл содержание материала в объеме, предусмотренном
программой и учебником;
 изложил
материал
грамотным
языком,
точно
используя
математическую терминологию и символику, в определенной
логической последовательности;
 правильно выполнил рисунки, чертежи, графики, сопутствующие
ответу;
 показал умение иллюстрировать теорию конкретными примерами,
применять в новой ситуации при выполнении практического задания;
 продемонстрировал усвоение ранее изученных сопутствующих
вопросов, сформированность и устойчивость используемых при ответе
умений и навыков;
 отвечал самостоятельно, без наводящих вопросов учителя.
Ответ оценивается отметкой “4”,
если удовлетворяет в основном требованиям на оценку “5”, но при этом
имеет один из недочетов:
 в изложении допущены небольшие пробелы, не исказившие
математическое содержание ответа;
 допущены 1-2 недочета при освещении основного содержания ответа,
исправленные после замечания учителя;
 допущены ошибка или более двух недочетов при освещении
второстепенных вопросов или в выкладках, легко исправленные после
замечания учителя.)
Ответ оценивается отметкой “3”, если:
 неполно раскрыто содержание материала (содержание изложено
фрагментарно, не всегда последовательно), но показано общее

понимание вопроса и продемонстрированы умения, достаточные для
дальнейшего усвоения программы;
 имелись затруднения или допущены ошибки в определении понятий,
использовании математической терминологии, чертежах, выкладках,
исправленные после нескольких наводящих вопросов учителя;
 ученик не справился с применением теории в новой ситуации при
выполнении практического задания, но выполнил обязательное
задание.
Ответ оценивается отметкой “2”, если:
 не раскрыто содержание учебного материала;
 обнаружено незнание или не понимание учеником большей или
наиболее важной части учебного материала;
 допущены ошибки в определении понятия, при использовании
математической терминологии, в рисунках, чертежах или графиках, в
выкладках, которые не исправлены после нескольких наводящих
вопросов учителя.
Оценивание письменных работ:
При проверке письменных работ по математике следует различать грубые и
негрубые ошибки.
К грубым ошибкам относятся:
 -вычислительные ошибки в примерах и задачах;
 -ошибки на незнание порядка выполнения арифметических действий;
 -неправильное решение задачи (пропуск действий, неправильный
выбор действий, лишнее действие);
 -недоведение до конца решения задачи или примера;
 -невыполненное задание.
К негрубым ошибкам относятся:
 -нерациональные приемы вычислений;
 - неправильная постановка вопроса к действию при решении задачи;
 -неверно сформулированный ответ задачи;
 -неправильное списывание данных чисел, знаков;
 -недоведение до конца преобразований.
При оценке письменных работ ставятся следующие отметки:
“5”- если задачи решены без ошибок;
“4”- если допущены 1-2 негрубые ошибки;
“3”- если допущены 1 грубая и 3-4 негрубые ошибки;
“2”- незнание основного программного материала или отказ от
выполнения учебных обязанностей.
Оценивание тестовых работ:
“5”- если набрано от 81до100% от максимально возможного балла;
“4”- от 61до 80%;
“3”- от 51 до 60%;
“2”- до 50%.

УЧЕБНО – МЕТОДИЧЕСКОЕ ОБЕСПЕЧЕНИЕ УРОКОВ
МАТЕМАТИКИ 8 КЛАССА
1. Ш.А. Алимов, Ю.М. Колягин и др. Алгебра. 8 класс: учебник для
учащихся общеобразовательных учреждений – Москва « Просвещение»,
2007.
2. И.Ф. Шарыгин, А.В. Шевкин. Задачи на смекалку по математике для 8-9
классов – Москва « Просвещение», 2006.
3. В.И. Жохов, Ю.Н. Макарычев. Дидактические материалы по алгебре
для 8 класса – Москва « Просвещение», 2008.
4. Л.С. Атанасян и др. Геометрия, 7-9. Учебник для общеобразовательных
учреждений – Москва « Просвещение», 2017.
5. Б.Г. Зив, В.М. Мейлер. Дидактические материалы по геометрии для 8
класса – Москва « Просвещение», 2008.
А также дополнительных пособий:
для учащихся:
1. Рабочая тетрадь по геометрии: 8 класс: к учебнику Л.С. Атанасяна и др.
издательство «ЭКЗАМЕН», 2016.
2. Алгебра. 8 класс. Рабочая тетрадь в 2 ч. Колягин Ю.М., Ткачева М.В. и
др. Просвещение, 2013.
3. Математика, 8-9 классы: сборник элективных курсов. Авт.-сост. М.Е.
Козина. - Волгоград: Учитель, 2007.
4. Ершова А.П., Голобородько В.В., Ершова А.С. Самостоятельные и
контрольные работы по алгебре и геометрии для 8 класса. – М.: Илекса,
2008.
для учителя:
1. Клименченко, Д. В. Задачи по математике для любознательных / Д. В.
Клименченко. – М.: Просвещение, 2007.
2. Арутюнян, Е. Б. Математические диктанты для 5–9 классов / Е. Б.
Арутюнян. – М., 1995.
3. Алгебра. Дидактические материалы для 8 класса. М.К. Потапов, А.В.
Шевкин. Москва «Просвещение» , 2015.
4. Тесты по алгебре. 8 класс. К учебнику С.М. Никольского и др.
«Алгебра. 8 класс» С.Г. Журавлев, В.В. Ермаков, Ю.В. Перепелкина, В.А.
Свентковский. Издательство «Экзамен». Москва, 2016.
5. Алгебра. Тематические тесты. 8 класс. П.В. Чулков, Т.С. Струков.
Москва «Просвещение» , 2016.

6. Рабочая тетрадь по алгебре. К учебнику С.М. Никольского и др.
«Алгебра. 8 класс». С.Г. Журавлев, Ю.В. Перепелкина. Издательство
«Экзамен». Москва, 2016.
7.Геометрия. Учебник для 7-9 классов общеобразовательных учреждений.
Л.С. Атанасян, В.Ф. Бутузов и др. Москва «Просвещение» , 2015.
8. Изучение геометрии в 7-9 классах. Книга для учителя. Л.С. Атанасян,
В.Ф. Бутузов. Москва «Просвещение» , 2015.
9. Задачи к урокам геометрии 7-11 классы. Б.Г. Зив. СП, 2015
10.Сборник задач по алгебре. М.Л. Галицкий, А.М. Гольдман, Л.И. Звавич.
Москва «Просвещение» 2015.
11.Алгебра. Сборник заданий для подготовки к итоговой аттестации в 9
классе. Л.В.Кузнецова, С.Б.Суворова, Е.А. Бунимович и дрИнтернет –
ресурсы:
1. Энциклопедия для детей http://the800.info/yentsiklopediya-dlya-deteymatematika
2. Энциклопедия по математике
http://www.krugosvet.ru/enc/nauka_i_tehnika/matematika/MA
TEMATIKA.html
3. Справочник
по
математике
для
школьников
http://www.resolventa.ru/demo/demomath.htm
4. Математика он-лайн http://uchit.rastu.ru
5. http://alexlarin.net/
6. http://www.fipi.ru/
7. http://inf.сдам гиа.рф
8. Педсовет, математика http://pedsovet.su/load/135
9. Учительский портал. Математика http://www.uchportal.ru/load/28
10. Уроки. Нет. Для учителя математики, алгебры, геометрии
http://www.uroki.net/docmat.htm


Наверх
На сайте используются файлы cookie. Продолжая использование сайта, вы соглашаетесь на обработку своих персональных данных (согласие). Подробности об обработке ваших данных — в политике конфиденциальности.

Функционал «Мастер заполнения» недоступен с мобильных устройств.
Пожалуйста, воспользуйтесь персональным компьютером для редактирования информации в «Мастере заполнения».